Testnet Tensor
  • Introduction
  • Explorer
  • GPT
  • DSN Dashboard
  • Create Account
    • Wallet
    • CLI
    • Faucet
  • Hypertensor CLI
    • Hypertensor CLI
  • Run A Subnet Node
    • Getting Started
    • Wiki
      • Running on AMD GPU
      • Running on Windows Using WSL
      • Troubleshooting
    • Generate Keypair
    • Register & Stake
    • Add
    • Start Validator Node
    • Start Bootstrap Node
    • Activate
    • Update Delegate Reward Rate
    • Deactivate
    • Remove
    • Keys
  • Delegate Staking
    • Introduction
    • Add Delegate Stake
    • Transfer Delegate Stake
    • Remove Delegate Stake
    • Claim Delegate Stake
  • Node Delegate Staking
    • Introduction
    • Add Node Delegate Stake
    • Transfer Node Delegate Stake
    • Remove Node Delegate Stake
    • Claim Node Delegate Stake
  • Delegate Staking Utils
    • Introduction
    • Subnet to Node
    • Node to Subnet
  • Build a Subnet
    • Introduction
    • DSN Standard
    • Subnet Consensus Protocol (SCP)
      • Incentives
      • Accounting
      • Proposals
    • Subnet
      • Registration
      • Activation
      • Deactivation
    • Subnet Nodes
      • Registration
      • Activation
      • Deactivate
  • Contribute
Powered by GitBook
On this page
  1. Run A Subnet Node
  2. Wiki

Troubleshooting

PreviousRunning on Windows Using WSLNextGenerate Keypair

Last updated 2 months ago

This page lists common errors and ways to address them.

Before starting your subnet validator node, ensure the following are true:

  • Run nvidia-smi

    • This should display your GPU information.

    • Otherwise, you will need to use the following to install your GPU:

  • Run python3 -c "import torch; print(torch.cuda.is_available())"or python -c "import torch; print(torch.cuda.is_available())"

    • This should print True

    • Otherwise, reboot your server or ensure you have torch installed.


  1. I get this error: hypermind.dht.protocol.ValidationError: local time must be within 3 seconds of others on WSL. What should I do?

    All clocks on all nodes need to be synchronized. Please set the date using an :

    sudo apt install ntpdate
    sudo ntpdate pool.ntp.org
  2. The server starts loading blocks and then prints: Killed. What should I do?

    This happens since Windows doesn't allocate much RAM to WSL by default, so the server gets OOM-killed.

    To increase the memory limit, go to C:/Users/username and create the .wslconfig with this contents:

    [wsl2]
    memory=12GB

    Then reboot WSL (run sudo reboot in the WSL console) and it should work fine.

  3. I get this error: torch.cuda.OutOfMemoryError: CUDA out of memory. What should I do?

    If you use an Anaconda env, run this before starting the server:

    export PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128

    If you use Docker, add this argument after --rm in the Docker command:

    -e "PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128"
  4. WSL clock tends to get out of synch, which prevents the server from launching with the error hypermind.dht.protocol.ValidationError: local time must be within 3 seconds of others.

    To sync the WSL clock run sudo ntpdate pool.ntp.org. See more fixes .

https://docs.nvidia.com/cuda/cuda-installation-guide-linux
https://ubuntu.com/server/docs/nvidia-drivers-installation
NTP server
discussed at stackverflow